Filters
Question type

Study Flashcards

Use the partial sum formula to find the partial sum of the given arithmetic sequence. -Find the sum of the first eight terms of the arithmetic sequence 6,16,26,- 6 , - 16 , - 26 , \ldots


A) 48- 48
B) 128- 128
C) 328
D) 328- 328

Correct Answer

verifed

verified

Solve the problem. -Write 0.30300.30 \overline { 30 } as an infinite geometric series and use the formula for S\mathrm { S } _ { \infty } to write it as a rational number.


A) 1033\frac { 10 } { 33 }
B) 10333\frac { 10 } { 333 }
C) 2033\frac { 20 } { 33 }
D) 13\frac { 1 } { 3 }

Correct Answer

verifed

verified

Write the first five terms of the sequence whose general term is given. - an=n2na _ { n } = n ^ { 2 } - n


A) 0,2,6,12,200,2,6,12,20
B) 1,4,9,16,251,4,9,16,25
C) 2,6,12,20,302,6,12,20,30
D) 0,3,8,15,240,3,8,15,24

Correct Answer

verifed

verified

Given are the first three terms of a sequence that is geometric. Find a1 and r. - 2,8,322,8,32


A) a1=2;r=4a _ { 1 } = 2 ; r = 4
B) a1=2;r=1a _ { 1 } = 2 ; r = 1
C) a1=2;r=14\mathrm { a } _ { 1 } = 2 ; \mathrm { r } = \frac { 1 } { 4 }
D) a1=2;r=8a _ { 1 } = 2 ; r = 8

Correct Answer

verifed

verified

Evaluate the expression. - 7!3!4!\frac { 7 ! } { 3 ! 4 ! }


A) 1
B) 35
C) 7
D) 210

Correct Answer

verifed

verified

Solve the problem. -The distance, in feet, that a car travels down the side of a mountain in each consecutive second is modeled by a sequence whose general term is an=35n17a _ { n } = 35 n - 17 , where nn is the number of seconds. Find the distance the car travels in the fifth second.


A) 158ft158 \mathrm { ft }
B) 192ft192 \mathrm { ft }
C) 123ft123 \mathrm { ft }
D) 175ft175 \mathrm { ft }

Correct Answer

verifed

verified

Expand the binomial. - (5x2y) 3( 5 x - 2 y ) ^ { 3 }


A) 125x350x2y+20xy28y3125 x ^ { 3 } - 50 x ^ { 2 } y + 20 x y ^ { 2 } - 8 y ^ { 3 }
B) 25x3y10x2y2+4xy325 x ^ { 3 } y - 10 x ^ { 2 } y ^ { 2 } + 4 x y ^ { 3 }
C) 25x3y20x2y2+4xy325 x ^ { 3 } y - 20 x ^ { 2 } y ^ { 2 } + 4 x y ^ { 3 }
D) 125x3150x2y+60xy28y3125 x ^ { 3 } - 150 x ^ { 2 } y + 60 x y ^ { 2 } - 8 y ^ { 3 }

Correct Answer

verifed

verified

Evaluate the expression. - 6!0!\frac { 6 ! } { 0 ! }


A) 720
B) 360
C) undefined
D) 120

Correct Answer

verifed

verified

Find the indicated term. -The ninth term of the expansion of (4x+y) 8( 4 x + y ) ^ { 8 }


A) 4y84 y ^ { 8 }
B) y9\mathrm { y } ^ { 9 }
C) 32xy732 x y ^ { 7 }
D) y8y ^ { 8 }

Correct Answer

verifed

verified

Solve the problem. -If a1a _ { 1 } is 12\frac { 1 } { 2 } , and rr is 2- 2 , find S10\mathrm { S } _ { 10 } .


A) 167- 167
B) 3432- \frac { 343 } { 2 }
C) 3472- \frac { 347 } { 2 }
D) 3412- \frac { 341 } { 2 }

Correct Answer

verifed

verified

Fill in the blank with one of the words or phrases listed below.  general term  common difference  finite sequence  common ratio  Pascal’s triangle  infinite sequence  factorial of n series  geometric sequence  arithmetic sequence \begin{array} { l l l l } \text { general term } & \text { common difference } & \text { finite sequence } & \text { common ratio } \\\text { Pascal's triangle } & \text { infinite sequence } & \text { factorial of } \mathbf { n } & \text { series } \\\text { geometric sequence } & \text { arithmetic sequence } & &\end{array} -A(n) --------- is a sequence in which each term (after the first) differs from the preceeding term by a constant amount d. The constant d is called the ----------of the sequence


A) arithmetic sequence, common ratio
B) arithmetic sequence, common difference
C) geometric sequence, common difference
D) geometric sequence, common ratio

Correct Answer

verifed

verified

Find the partial sum. -Find the sum of the first ten terms of the sequence whose general term is an=(1) na _ { n } = ( - 1 ) ^ { n } .


A) 1
B) 10- 10
C) 1- 1
D) 0

Correct Answer

verifed

verified

Find the sum of the terms of the infinite geometric sequence. - 96,24,6,96,24,6 , \cdots


A) 128
B) 32- 32
C) 96
D) 126

Correct Answer

verifed

verified

Fill in the blank with one of the words or phrases listed below.  general term  common difference  finite sequence  common ratio  Pascal’s triangle  infinite sequence  factorial of n series  geometric sequence  arithmetic sequence \begin{array} { l l l l } \text { general term } & \text { common difference } & \text { finite sequence } & \text { common ratio } \\\text { Pascal's triangle } & \text { infinite sequence } & \text { factorial of } \mathbf { n } & \text { series } \\\text { geometric sequence } & \text { arithmetic sequence } & &\end{array} -A(n) ----------is a sequence in which each term (after the first) is obtained by multiplying the preceeding term by a constant amount r. The constant r is called the of the sequence


A) arithmetic sequence, common difference
B) geometric sequence, common difference
C) arithmetic sequence, common ratio
D) geometric sequence, common ratio

Correct Answer

verifed

verified

Evaluate the expression. - 10!5!5!\frac { 10 ! } { 5 ! 5 ! }


A) 126
B) 504
C) 30,240
D) 252

Correct Answer

verifed

verified

Evaluate the expression. - i=25(4i3) \sum _ { i = 2 } ^ { 5 } ( 4 i - 3 )


A) 34
B) 39
C) 44
D) 25

Correct Answer

verifed

verified

Solve the problem. -If a a1a _ { 1 } is 4,a324 , a _ { 32 } is 53\frac { 5 } { 3 } , and dd is 793- \frac { 7 } { 93 } , find S32S _ { 32 } .


A) 842593\frac { 8425 } { 93 }
B) 2723\frac { 272 } { 3 }
C) 5443\frac { 544 } { 3 }
D) 281331\frac { 2813 } { 31 }

Correct Answer

verifed

verified

Use the partial sum formula to find the partial sum of the given geometric sequence. -Find the sum of the first five terms of the geometric sequence 1,2,4,1,2,4 , \ldots


A) 315\frac { 31 } { 5 }
B) 9115\frac { 91 } { 15 }
C) 913\frac { 91 } { 3 }
D) 31

Correct Answer

verifed

verified

Solve the problem. -A pendulum swings through an arc 40 inches long on its first swing. Each swing thereafter, it swings only 60% as far as on the previous swing. How far will it swing altogether before coming to A complete stop? If necessary, round to the nearest inch.


A) 100 in.
B) 133 in.
C) 67 in.
D) 50 in.

Correct Answer

verifed

verified

Find the first five terms of the sequence. Round each term to four decimal places as necessary. - an=(1+23n) na _ { n } = \left( 1 + \frac { 2 } { 3 n } \right) ^ { n } \quad Round each term to four decimal places when necessary.


A) 1.6667,1.7778,1.8258,1.8526,1.86981.6667,1.7778,1.8258,1.8526,1.8698
B) 0.6667,1.3333,1.2222,1.1667,1.13330.6667,1.3333,1.2222,1.1667,1.1333
C) 1.6667,1.3333,1.2222,1.1667,1.13331.6667,1.3333,1.2222,1.1667,1.1333
D) 0.6667,1.7778,1.8258,1.8526,1.86980.6667,1.7778,1.8258,1.8526,1.8698

Correct Answer

verifed

verified

Showing 61 - 80 of 201

Related Exams

Show Answer