Filters
Question type

Study Flashcards

Solve the problem. -Find out how long it takes a $2700\$ 2700 investment to earn $300\$ 300 interest if it is invested at 7%7 \% compounded quarterly. Round to the nearest tenth of a year. Use the formula A=P(1+rn) nt\mathrm { A } = \mathrm { P } \left( 1 + \frac { \mathrm { r } } { \mathrm { n } } \right) ^ { \mathrm { n } t } .


A) 1.51.5 years
B) 1.71.7 years
C) 1.31.3 years
D) 1.91.9 years

Correct Answer

verifed

verified

Write the equation in its equivalent logarithmic form. - c4=20,736c ^ { 4 } = 20,736


A) logC20,736=4\log _ { \mathrm { C } } 20,736 = 4
B) log20,736c=4\log _ { 20,736 } \mathrm { c } = 4
C) log420,736=c\log _ { 4 } 20,736 = c
D) logC4=20,736\log _ { \mathrm { C } } 4 = 20,736

Correct Answer

verifed

verified

Use the One-to-One Property of Logarithms to Solve Logarithmic Equations Solve the logarithmic equation. Be sure to reject any value that is not in the domain of the original logarithmic expressions. Give the exact answer. - log3x=log4+log(x3) \log 3 x = \log 4 + \log ( x - 3 )


A) {12}\{ 12 \}
B) {12}\left\{ \frac { 1 } { 2 } \right\}
C) {12}\{ - 12 \}
D) {127}\left\{ - \frac { 12 } { 7 } \right\}

Correct Answer

verifed

verified

Solve the exponential equation. Use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. - e2x+ex6=0e ^ { 2 x } + e ^ { x } - 6 = 0


A) 0.690.69
B) 0.69,1.100.69,1.10
C) 1.10,0.141.10,0.14
D) 0.140.14

Correct Answer

verifed

verified

Find the domain of the logarithmic function. - f(x) =log9(x+8) f ( x ) = \log _ { 9 } ( x + 8 )


A) (8,) ( - 8 , \infty )
B) (9,) ( 9 , \infty )
C) (8,) ( 8 , \infty )
D) (,0) ( - \infty , 0 ) or (0,) ( 0 , \infty )

Correct Answer

verifed

verified

Use properties of logarithms to condense the logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions. - logx+log(x24) log3log(x2) \log x + \log \left( x ^ { 2 } - 4 \right) - \log 3 - \log ( x - 2 )


A) logx(x+2) 3\log \frac { x ( x + 2 ) } { 3 }
B) logx(x4) 3(x2) \log \frac { x ( x - 4 ) } { 3 ( x - 2 ) }
C) logx(x4) (x2) 3\log \frac { x ( x - 4 ) ( x - 2 ) } { 3 }
D) log2x+2) 5x\log \frac { 2 x + 2 ) } { 5 - x }

Correct Answer

verifed

verified

Solve the problem. -Use the formula R=log(aT) +B\mathrm { R } = \log \left( \frac { \mathrm { a } } { \mathrm { T } } \right) + \mathrm { B } to find the intensity R\mathrm { R } on the Richter scale, given that amplitude a is 207 micrometers, time T\mathrm { T } between waves is 3.53.5 seconds, and B\mathrm { B } is 2.7. Round answer to one decimal place.


A) 4.54.5
B) 6.86.8
C) 1.81.8
D) 7

Correct Answer

verifed

verified

Graph the function. -Use the graph of f(x) =exf ( x ) = e ^ { x } to obtain the graph of g(x) =2exg ( x ) = 2 e ^ { x } .  Graph the function. -Use the graph of  f ( x )  = e ^ { x }  to obtain the graph of  g ( x )  = 2 e ^ { x } .    A)    B)    C)    D)


A)
 Graph the function. -Use the graph of  f ( x )  = e ^ { x }  to obtain the graph of  g ( x )  = 2 e ^ { x } .    A)    B)    C)    D)
B)
 Graph the function. -Use the graph of  f ( x )  = e ^ { x }  to obtain the graph of  g ( x )  = 2 e ^ { x } .    A)    B)    C)    D)
C)
 Graph the function. -Use the graph of  f ( x )  = e ^ { x }  to obtain the graph of  g ( x )  = 2 e ^ { x } .    A)    B)    C)    D)
D)
 Graph the function. -Use the graph of  f ( x )  = e ^ { x }  to obtain the graph of  g ( x )  = 2 e ^ { x } .    A)    B)    C)    D)

Correct Answer

verifed

verified

Use properties of logarithms to expand the logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. - log3(71113) \log _ { 3 } \left( \frac { 7 \cdot 11 } { 13 } \right)


A) log37+log311log313\log _ { 3 } 7 + \log _ { 3 } 11 - \log _ { 3 } 13
B) log3(7713) \log _ { 3 } \left( \frac { 77 } { 13 } \right)
C) log377log313\log _ { 3 } 77 - \log _ { 3 } 13
D) log35\log _ { 3 } 5

Correct Answer

verifed

verified

Solve the problem. -The logistic growth function f(t) =57,0001+813.3e1.6t\mathrm { f } ( \mathrm { t } ) = \frac { 57,000 } { 1 + 813.3 \mathrm { e } ^ { - 1.6 \mathrm { t } } } models the number of people who have become ill with a particular infection tt weeks after its initial outbreak in a particular community. How many people became ill with this infection when the epidemic began?


A) 70 people
B) 57,000 people
C) 813 people
D) 814 people

Correct Answer

verifed

verified

Solve the exponential equation. Use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. - 25x=3.72 ^ { 5 x } = 3.7


A) 0.380.38
B) 0.410.41
C) 9.449.44
D) 8.598.59

Correct Answer

verifed

verified

Evaluate or simplify the expression without using a calculator. - 10logx410 \log \sqrt [ 4 ] { x }


A) x1/4x ^ { 1 / 4 }
B) x4x ^ { 4 }
C) 4
D) x1/4x ^ { - 1 / 4 }

Correct Answer

verifed

verified

Use properties of logarithms to expand the logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. - log7(m5n6k2) \log _ { 7 } \left( \frac { \sqrt [ 5 ] { m } \sqrt [ 6 ] { n } } { k ^ { 2 } } \right)


A) 15log7 m+16log7n2log7k\frac { 1 } { 5 } \log _ { 7 } \mathrm {~m} + \frac { 1 } { 6 } \log _ { 7 } \mathrm { n } - 2 \log _ { 7 } \mathrm { k }
B) 15log7 m16log7n÷2log7k\frac { 1 } { 5 } \log _ { 7 } \mathrm {~m} \cdot \frac { 1 } { 6 } \log _ { 7 } \mathrm { n } \div 2 \log _ { 7 } \mathrm { k }
C) 57log7 m+67log7n27log7k\frac { 5 } { 7 } \log _ { 7 } \mathrm {~m} + \frac { 6 } { 7 } \log _ { 7 } \mathrm { n } - \frac { 2 } { 7 } \log _ { 7 } \mathrm { k }
D) 5log7 m+6log7n2log7k5 \log _ { 7 } \mathrm {~m} + 6 \log _ { 7 } \mathrm { n } - 2 \log _ { 7 } \mathrm { k }

Correct Answer

verifed

verified

Use Natural Logarithms Evaluate or simplify the expression without using a calculator. - eln112\mathrm { e } ^ { \ln 112 }


A) 112
B) 112- 112
C) e112\mathrm { e } ^ { 112 }
D) ln112\ln 112

Correct Answer

verifed

verified

Graph the function. -Use the graph of f(x) =2xf ( x ) = 2 ^ { x } to obtain the graph of g(x) =22xg ( x ) = 2 \cdot 2 ^ { x } .  Graph the function. -Use the graph of  f ( x )  = 2 ^ { x }  to obtain the graph of  g ( x )  = 2 \cdot 2 ^ { x } .   A)    B)    C)    D)


A)
 Graph the function. -Use the graph of  f ( x )  = 2 ^ { x }  to obtain the graph of  g ( x )  = 2 \cdot 2 ^ { x } .   A)    B)    C)    D)
B)
 Graph the function. -Use the graph of  f ( x )  = 2 ^ { x }  to obtain the graph of  g ( x )  = 2 \cdot 2 ^ { x } .   A)    B)    C)    D)
C)
 Graph the function. -Use the graph of  f ( x )  = 2 ^ { x }  to obtain the graph of  g ( x )  = 2 \cdot 2 ^ { x } .   A)    B)    C)    D)
D)
 Graph the function. -Use the graph of  f ( x )  = 2 ^ { x }  to obtain the graph of  g ( x )  = 2 \cdot 2 ^ { x } .   A)    B)    C)    D)

Correct Answer

verifed

verified

Use properties of logarithms to expand the logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. - log3(9x1) \log _ { 3 } \left( \frac { 9 } { \sqrt { x - 1 } } \right)


A) 212log3(x1) 2 - \frac { 1 } { 2 } \log _ { 3 } ( x - 1 )
B) 2log3312log3(x1) 2 \log _ { 3 } 3 - \frac { 1 } { 2 } \log _ { 3 } ( x - 1 )
C) log39log3x1\log _ { 3 } 9 - \log _ { 3 } \sqrt { x - 1 }
D) 2log3x12 - \log _ { 3 } \sqrt { x - 1 }

Correct Answer

verifed

verified

Solve the problem. -The logistic growth function f(t) =4401+5.3e0.24tf ( t ) = \frac { 440 } { 1 + 5.3 e ^ { - 0.24 t } } describes the population of a species of butterflies t months after they are introduced to a non-threatening habitat. What is the limiting size of the butterfly population that the habitat will sustain?


A) 440 butterflies
B) 70 butterflies
C) 5 butterflies
D) 880 butterflies

Correct Answer

verifed

verified

Graph the function. -Use the graph of f(x) =3xf ( x ) = 3 ^ { x } to obtain the graph of g(x) =3xg ( x ) = 3 ^ { - x } .  Graph the function. -Use the graph of  f ( x )  = 3 ^ { x }  to obtain the graph of  g ( x )  = 3 ^ { - x } .    A)    B)    C)    D)


A)
 Graph the function. -Use the graph of  f ( x )  = 3 ^ { x }  to obtain the graph of  g ( x )  = 3 ^ { - x } .    A)    B)    C)    D)
B)
 Graph the function. -Use the graph of  f ( x )  = 3 ^ { x }  to obtain the graph of  g ( x )  = 3 ^ { - x } .    A)    B)    C)    D)
C)
 Graph the function. -Use the graph of  f ( x )  = 3 ^ { x }  to obtain the graph of  g ( x )  = 3 ^ { - x } .    A)    B)    C)    D)
D)
 Graph the function. -Use the graph of  f ( x )  = 3 ^ { x }  to obtain the graph of  g ( x )  = 3 ^ { - x } .    A)    B)    C)    D)

Correct Answer

verifed

verified

Use the Definition of a Logarithm to Solve Logarithmic Equations Solve the logarithmic equation. Be sure to reject any value that is not in the domain of the original logarithmic expressions. Give the exact answer. - log2(x+1) log2(x3) =4\log _ { 2 } ( x + 1 ) - \log _ { 2 } ( x - 3 ) = 4


A) {4915}\left\{ \frac { 49 } { 15 } \right\}
B) {415}\left\{ \frac { 4 } { 15 } \right\}
C) {4915}\left\{ - \frac { 49 } { 15 } \right\}
D) \varnothing )

Correct Answer

verifed

verified

Use Compound Interest Formulas Use the compound interest formulas A A=P(1+rn)  and A=Pert to solve A = P \left( 1 + \frac { r } { n } \right) \text { and } A = P e ^ { r t } \text { to solve } -Find the accumulated value of an investment of $1230 at 6% compounded annually for 5 years.


A) $1646.02
B) $1552.85
C) $1525.20
D) $1599.00

Correct Answer

verifed

verified

Showing 121 - 140 of 268

Related Exams

Show Answer