Filters
Question type

Study Flashcards

Solve the problem. -An industrial ventilation system can move 2000 cubic feet per minute. How many cubic feet of air are moved in 8 hours?


A) 2000ft32000 \mathrm { ft } ^ { 3 }
B) 96,000ft396,000 \mathrm { ft } ^ { 3 }
C) 16,000ft316,000 \mathrm { ft } ^ { 3 }
D) 960,000ft3960,000 \mathrm { ft } ^ { 3 }

Correct Answer

verifed

verified

Find the definite integral by computing an area. - 250.5xdx\int _ { 2 } ^ { 5 } 0.5 x d x


A) 34\frac { 3 } { 4 }
B) 214\frac { 21 } { 4 }
C) 294\frac { 29 } { 4 }
D) 10.510.5

Correct Answer

verifed

verified

Determine the limit algebraically, if possible. - limx0sin6xx6\lim _ { x \rightarrow0 } \frac { \sin ^ { 6 } x } { x ^ { 6 } }


A) 6
B) 1
C) Does not exist
D) 0

Correct Answer

verifed

verified

Use the given graph to determine the limit, if it exists. - limxθf(x) \lim _{x \rightarrow-\theta} f(x)  Use the given graph to determine the limit, if it exists. - \lim _{x \rightarrow-\theta} f(x)      A)  Does not exist B)  0 C)   - 1  D)  1


A) Does not exist
B) 0
C) 1- 1
D) 1

Correct Answer

verifed

verified

Solve the problem. -An arrow is shot straight up from level ground. The distance (in meters) of the arrow above the ground (the position function) is f(t) =4+130t4.9t2\mathrm { f } ( \mathrm { t } ) = 4 + 130 \mathrm { t } - 4.9 \mathrm { t } ^ { 2 } at any time t\mathrm { t } (in sec) . Find f(1) \mathrm { f } ^ { \prime } ( 1 ) and the initial velocity of the arrow.


A) f(1) =120.2\mathrm { f } ^ { \prime } ( 1 ) = 120.2 ; initial velocity =130 m/s= 130 \mathrm {~m} / \mathrm { s }
B) f(1) =124.2\mathrm { f } ^ { \prime } ( 1 ) = 124.2 ; initial velocity =130 m/s= 130 \mathrm {~m} / \mathrm { s }
C) f(1) =120.2f ^ { \prime } ( 1 ) = 120.2 ; initial velocity =4 m/s= 4 \mathrm {~m} / \mathrm { s }
D) f(1) =9.8f ^ { \prime } ( 1 ) = - 9.8 ; initial velocity =130 m/s= 130 \mathrm {~m} / \mathrm { s }

Correct Answer

verifed

verified

Find the derivative of the function using the definition of derivative. - f(x) =x2+7x2f ( x ) = x ^ { 2 } + 7 x - 2


A) f(x) =2x2f ^ { \prime } ( x ) = 2 x - 2
B) f(x) =2x+7f ^ { \prime } ( x ) = 2 x + 7
C) f(x) =2xf ^ { \prime } ( x ) = 2 x
D) f(x) =x+7f ^ { \prime } ( x ) = x + 7

Correct Answer

verifed

verified

Find the limit of the function algebraically. - limx6x236x+6\lim _ { x \rightarrow 6 } \frac { x ^ { 2 } - 36 } { x + 6 }


A) 6- 6
B) 12- 12
C) Does not exist
D) 1

Correct Answer

verifed

verified

Find the limit. -Let limx4f(x) =10\lim _ { x \rightarrow 4 } f ( x ) = - 10 and limx4g(x) =4\lim _ { x \rightarrow 4 } g ( x ) = 4 . Find limx4[f(x) g(x) ]\lim _ { x \rightarrow 4 } [ f ( x ) - g ( x ) ] .


A) 4- 4
B) 14- 14
C) 10- 10
D) 6- 6

Correct Answer

verifed

verified

Use NDER on a calculator to find the numerical derivative of the function at the specified point. - f(x) =ln(7x) f ( x ) = \ln ( 7 x ) at x=1x = 1


A) -1.0000
B) 1.00001.0000
C) 10.000010.0000
D) 1945.90961945.9096

Correct Answer

verifed

verified

Find the derivative of the function at the specified point. - f(x) =x2+7x2f ( x ) = x ^ { 2 } + 7 x - 2 at x=0x = 0


A) 0
B) 9
C) 7
D) 2- 2

Correct Answer

verifed

verified

Find the indicated limit, if it exists. - limx5f(x) ,f(x) ={5xx<54x=5x+9x>5\lim _ { x \rightarrow 5 } f ( x ) , f ( x ) = \left\{ \begin{array} { l l } - 5 - x & x < - 5 \\ 4 & x = - 5 \\ x + 9 & x > - 5 \end{array} \right.


A) 0
B) The limit does not exist.
C) 9
D) 4

Correct Answer

verifed

verified

Find the limit of the function by using direct substitution. - limx0(x25) \lim _ { x \rightarrow 0 } \left( x ^ { 2 } - 5 \right)


A) Does not exist
B) 5- 5
C) 5
D) 0

Correct Answer

verifed

verified

Find the derivative of the function using the definition of derivative. - f(x) =5x+9f ( x ) = 5 x + 9


A) f(x) =9f ^ { \prime } ( x ) = 9
B) f(x) =0f ^ { \prime } ( x ) = 0
C) f(x) =5xf ^ { \prime } ( x ) = 5 x
D) f(x) =5f ^ { \prime } ( x ) = 5

Correct Answer

verifed

verified

Estimate the slope of the tangent line at the indicated point. - Estimate the slope of the tangent line at the indicated point. -  A)  0 B)  Undefined C)   - 1  D)  1


A) 0
B) Undefined
C) 1- 1
D) 1

Correct Answer

verifed

verified

Find the limit of the function algebraically. - limx1x7\lim _ { x \rightarrow 1 } \sqrt { x - 7 }


A) Does not exist
B) 2.449489742.44948974
C) 0
D) 2.4494897- 2.4494897

Correct Answer

verifed

verified

Find the indicated limit. - limx0sin(x) x2\lim _ { x \rightarrow 0 } \frac { \sin ( x ) } { x ^ { 2 } }


A) 0.50.5
B) 0
C) The limit does not exist.
D) 1

Correct Answer

verifed

verified

Find the limit. -Let limx6f(x) =225\lim _ { x \rightarrow 6 } f ( x ) = 225 . Find limx6f(x) \lim _ { x \rightarrow 6 } \sqrt { f ( x ) } .


A) 15
B) 3.87303.8730
C) 6
D) 225

Correct Answer

verifed

verified

Use a graph of the function to find the derivative of the function at the given point, if it exists. - f(x) ={(x3) (x5) x3x32x=3 at x=3f(x) =\left\{\begin{array}{cl}\frac{(x-3) (x-5) }{x-3} & x \neq 3 \\-2 & x=3\end{array} \quad \text { at } x=3\right.


A) 0
B) 1
C) Does not exist
D) 1- 1

Correct Answer

verifed

verified

Determine the limit algebraically, if possible. - limx0sin2x2x\lim _ { x \rightarrow 0 } \frac { \sin ^ { 2 } x } { 2 x }


A) 12\frac { 1 } { 2 }
B) 1
C) Does not exist
D) 0

Correct Answer

verifed

verified

Find the indicated limit, if it exists. - limx0f(x) ,f(x) ={8x2x<08x=02x+8x>0\lim _ { x \rightarrow 0 } f ( x ) , f ( x ) = \left\{ \begin{array} { l l } 8 - x ^ { 2 } & x < 0 \\ 8 & x = 0 \\ 2 x + 8 & x > 0 \end{array} \right.


A) The limit does not exist.
B) 8
C) 2
D) 6- 6

Correct Answer

verifed

verified

Showing 21 - 40 of 167

Related Exams

Show Answer