Filters
Question type

Study Flashcards

The sum of the series n=21n21\sum _ { n = 2 } ^ { \infty } \frac { 1 } { n ^ { 2 } - 1 } is


A) 0
B) 12\frac { 1 } { 2 }
C) 34\frac { 3 } { 4 }
D) 34\frac { 3 } { 4 } .
E) \infty

Correct Answer

verifed

verified

Using the first three nonzero terms of a Maclaurin series, the approximated value of 12ex2xdx\int _ { 1 } ^ { 2 } \frac { e ^ { - x ^ { 2 } } } { x } d x is


A) 3+4ln22\frac { 3 + 4 \ln 2 } { 2 }
B) 3+6ln24\frac { 3 + 6 \ln 2 } { 4 }
C) 3+8ln26\frac { 3 + 8 \ln 2 } { 6 }
D) 3+8ln28\frac { 3 + 8 \ln 2 } { 8 }
E) 3+6ln212\frac { 3 + 6 \ln 2 } { 12 }

Correct Answer

verifed

verified

The interval of convergence of the power series n=0(x+3) nn!\sum _ { n = 0 } ^ { \infty } \frac { ( x + 3 ) ^ { n } } { n ! } is


A) (-4,-2)
B) [-4,-2)
C) (-4,-2]
D) [-4,-2]
E) (- \infty , \infty )

Correct Answer

verifed

verified

Which of the following is true for the infinite series n=1ln(2n) en?\sum _ { n = 1 } ^ { \infty } \frac { \ln \left( 2 ^ { n } \right) } { e ^ { n } } ?


A) Its sequence of partial sums is not bounded from above.
B) Its sequence of partial sums is decreasing.
C) limnln2nen0\lim _ { n \rightarrow \infty } \frac { \ln 2 ^ { n } } { e ^ { n } } \neq 0
D) It is convergent.
E) It is divergent.

Correct Answer

verifed

verified

Which of the following is true for the infinite series n=12n+5(n2+5n) 3?\sum _ { n = 1 } ^ { \infty } \frac { 2 n + 5 } { \left( n ^ { 2 } + 5 n \right) ^ { 3 } } ?


A) Its sequence of partial sums is not bounded from below.
B) Its sequence of partial sums is decreasing.
C) limn2n+5(n2+5n) 30\lim _ { n \rightarrow \infty } \frac { 2 n + 5 } { \left( n ^ { 2 } + 5 n \right) ^ { 3 } } \neq 0
D) It is convergent.
E) It is divergent.

Correct Answer

verifed

verified

The sum of the series n=1(2e) n\sum _ { n = 1 } ^ { \infty } \left( \frac { 2 } { e } \right) ^ { n } is


A) 0
B) 2e2\frac { 2 } { e - 2 }
C) 22e\frac { 2 } { 2 - e }
D) e22\frac { e - 2 } { 2 }
E) \infty

Correct Answer

verifed

verified

The limit of the sequence an=3n+2n+5a _ { n } = \frac { 3 \sqrt { n } + 2 } { \sqrt { n } + 5 } is


A) 0
B) 3
C) 3\sqrt { 3 }
D) 25\frac { 2 } { 5 }
E) \infty

Correct Answer

verifed

verified

The Taylor series representation of f(x) =sinxf ( x ) = \sin x at π4\frac { \pi } { 4 } is


A) n=0sin(π(2n+1) 4) (xπ4) nn!\sum _ { n = 0 } ^ { \infty } \frac { \sin \left( \frac { \pi ( 2 n + 1 ) } { 4 } \right) \left( x - \frac { \pi } { 4 } \right) ^ { n } } { n ! }
B) n=0sin(π(2n+3) 4) (xπ4) nn!\sum _ { n = 0 } ^ { \infty } \frac { \sin \left( \frac { \pi ( 2 n + 3 ) } { 4 } \right) \left( x - \frac { \pi } { 4 } \right) ^ { n } } { n ! }
C) n=0sin(π(2n1) 4) (xπ4) nn!\sum _ { n = 0 } ^ { \infty } \frac { \sin \left( \frac { \pi ( 2 n - 1 ) } { 4 } \right) \left( x - \frac { \pi } { 4 } \right) ^ { n } } { n ! }
D) n=0sin(π(2n3) 4) (xπ4) nn!\sum _ { n = 0 } ^ { \infty } \frac { \sin \left( \frac { \pi ( 2 n - 3 ) } { 4 } \right) \left( x - \frac { \pi } { 4 } \right) ^ { n } } { n ! }
E) n=0sin(π(2n+5) 4) (xπ4) nn!\sum _ { n = 0 } ^ { \infty } \frac { \sin \left( \frac { \pi ( 2 n + 5 ) } { 4 } \right) \left( x - \frac { \pi } { 4 } \right) ^ { n } } { n ! }

Correct Answer

verifed

verified

The sum of the series n=12n+35n\sum _ { n = 1 } ^ { \infty } \frac { 2 ^ { n + 3 } } { 5 ^ { n } } is


A) 163\frac { 16 } { 3 }
B) 83\frac { 8 } { 3 }
C) 43\frac { 4 } { 3 }
D) 32\frac { 3 } { 2 }
E) \infty

Correct Answer

verifed

verified

The limit of the sequence an=en+3a _ { n } = e ^ { n + 3 } is


A) 0
B) 75\frac { 7 } { 5 }
C) 57\frac { 5 } { 7 }
D) 56- \frac { 5 } { 6 }
E) \infty

Correct Answer

verifed

verified

Which of the following is true for the infinite series n=12nn?\sum _ { n = 1 } ^ { \infty } \frac { 2 ^ { - n } } { \sqrt { n } } ?


A) Its sequence of partial sums is not bounded from above.
B) Its sequence of partial sums is decreasing.
C) limn2nn0\lim _ { n \rightarrow \infty } \frac { 2 ^ { - n } } { \sqrt { n } } \neq 0
D) It is convergent.
E) It is divergent.

Correct Answer

verifed

verified

Which of the following is true for the infinite series n=1cos(n) n2?\sum _ { n = 1 } ^ { \infty } \frac { \cos ( n ) } { n ^ { 2 } } ?


A) Its sequence of partial sums is not bounded from above.
B) Its sequence of partial sums is decreasing.
C) limncos(n) n20\lim _ { n \rightarrow \infty } \frac { \cos ( n ) } { n ^ { 2 } } \neq 0
D) It is convergent.
E) It is divergent.

Correct Answer

verifed

verified

Which of the following is true for the infinite series n=1(π) n?\sum _ { n = 1 } ^ { \infty } ( - \pi ) ^ { n } ?


A) Its sequence of partial sums is bounded from above.
B) Its sequence of partial sums is decreasing.
C) It is absolutely convergent.
D) It is conditionally convergent.
E) It is divergent.

Correct Answer

verifed

verified

Which of the following is true for the infinite series n=1sin(nπ) n?\sum _ { n = 1 } ^ { \infty } \frac { \sin ( n \pi ) } { n } ?


A) Its sequence of partial sums is not bounded from above.
B) Its sequence of partial sums is positive.
C) It is absolutely convergent.
D) It is not conditionally convergent.
E) It is divergent.

Correct Answer

verifed

verified

The sum of the series n=1πn\sum _ { n = 1 } ^ { \infty } \pi ^ { - n } is


A) π1\pi - 1
B) 1π1\frac { 1 } { \pi - 1 }
C) π+1\pi + 1
D) 1π+1\frac { 1 } { \pi + 1 }
E) \infty

Correct Answer

verifed

verified

The limit of the sequence an=3n+2n+5a _ { n } = \frac { 3 n + 2 } { \sqrt { n } + 5 } is


A) 0
B) 3
C) 3\sqrt { 3 }
D) 25\frac { 2 } { 5 }
E) \infty

Correct Answer

verifed

verified

By the error estimation theorem for convergent alternating series, the upper estimate to the error in approximating the sum of n=1(1) nn\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { n } using the first three terms is


A) 12\frac { 1 } { 2 }
B) 14\frac { 1 } { 4 }
C) 18\frac { 1 } { 8 }
D) 116\frac { 1 } { 16 }
E) 132\frac { 1 } { 32 }

Correct Answer

verifed

verified

Which of the following is true for the infinite series n=145n1?\sum _ { n = 1 } ^ { \infty } \frac { 4 } { 5 ^ { n } - 1 } ?


A) Its sequence of partial sums is not bounded from above.
B) Its sequence of partial sums is decreasing.
C) limn45n10\lim _ { n \rightarrow \infty } \frac { 4 } { 5 ^ { n } - 1 } \neq 0
D) It is convergent.
E) It is divergent.

Correct Answer

verifed

verified

Using the first three nonzero terms of the Maclaurin series, the approximated value of 12ex2x2dx\int _ { 1 } ^ { 2 } \frac { e ^ { x ^ { 2 } } } { x ^ { 2 } } d x is


A) 3
B) 83\frac { 8 } { 3 }
C) 73\frac { 7 } { 3 }
D) 113\frac { 11 } { 3 }
E) 133\frac { 13 } { 3 }

Correct Answer

verifed

verified

The sum of the series n=1πn\sum _ { n = 1 } ^ { \infty } \pi ^ { - n } is


A) 0
B) 1
C) -1
D) 12\frac { 1 } { 2 }
E) \infty

Correct Answer

verifed

verified

Showing 141 - 160 of 200

Related Exams

Show Answer