Filters
Question type

Study Flashcards

How many ways can we choose three items at random without replacement from five items (A, B, C, D, E) if the order of the selected items is not important?


A) 60
B) 120
C) 10
D) 24

Correct Answer

verifed

verified

Given the contingency table shown here, find P(E) . \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  Major \text { Major }  Gender  Accounting (A)  Gen. Mgmt. (G)  Economics (E)  Row Total  Male (M) 210180140530 Female (F) 150160160470 Col Total 3603403001000\begin{array} {| c | c | c | c | c| } \hline\text { Gender } & \text { Accounting } ( A ) & \text { Gen. Mgmt. } ( G ) & \text { Economics } ( E ) & \text { Row Total } \\\hline\text { Male } ( M ) & 210 & 180 & 140 & 530 \\\hline \text { Female } ( F ) & 150 & 160 & 160 & 470 \\\hline \quad \text { Col Total } & 360 & 340 & 300 & 1000\\\hline\end{array}


A) .180
B) .300
C) .529
D) .641

Correct Answer

verifed

verified

Given the contingency table shown here, if a survey participant is selected at random, what is the probability he/she is an undergrad who favors the change to a quarter system? \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  Group Surveyed \text { Group Surveyed }  Opinion:  Undergrads (U)  Graduates (G)  Faculty (F)  Row Total  Oppose Change (N)  732720120 Favor Change (S)  27233080 Col Total 1005050200\begin{array}{|c|c|c|c|c|}\hline \text { Opinion: } &\text { Undergrads }(U) & \text { Graduates }(G) & \text { Faculty }(F) & \text { Row Total } \\\hline \text { Oppose Change (N) } &73 & 27 & 20&120 \\\hline \text { Favor Change (S) } &27 & 23 & 30&80 \\\hline \text { Col Total } &100 & 50 & 50&200 \\\hline\end{array}


A) .270
B) .135
C) .338
D) .756

Correct Answer

verifed

verified

P(A | B) is the joint probability of events A and B divided by the probability ofA.

Correct Answer

verifed

verified

If events A and B are mutually exclusive, the joint probability of the events is zero.

Correct Answer

verifed

verified

The union of two events is all outcomes in either or both, while the intersection is only those events in both.

Correct Answer

verifed

verified

If events A and B are mutually exclusive, then P(A) + P(B) = 0.

Correct Answer

verifed

verified

The sum of the probabilities of all compound events in a sample space equals one.

Correct Answer

verifed

verified

When two events A and B are independent, the probability of their intersection can be found by multiplying their probabilities.

Correct Answer

verifed

verified

Debbie has two stocks, X and Y. Consider the following events: X = the event that the price of stock X has increased Y = the event that the price of stock Y has increased The event "the price of stock X has increased and the price of stock Y has not increased" may be written as


A) X′∩Y
B) X or Y′
C) X∩Y′
D) X or Y

Correct Answer

verifed

verified

Given the contingency table shown here, what is the probability that a student attends a public school in a rural area?  What type of school do you attend? \text { What type of school do you attend? }  Location  Public (P)  Religious (R)  Other Private (O)  Row Total  Inner City (I)  35152070 Sububan (S)  45102580 Rural (R)  255535 Col Total 1053050185\begin{array}{|c|c|c|c|c|}\hline \text { Location } &\text { Public }(P) & \text { Religious }(R) & \text { Other Private }(O) & \text { Row Total } \\\hline \text { Inner City (I) }&35 & 15 & 20&70 \\\hline \text { Sububan (S) }&45 & 10 & 25&80 \\\hline \text { Rural (R) }&25 & 5 & 5&35 \\\hline \text { Col Total }& 105 & 30 & 50&185 \\\hline\end{array}


A) .238
B) .714
C) .135
D) .567

Correct Answer

verifed

verified

A sample space is the set of all possible outcomes in an experiment.

Correct Answer

verifed

verified

P(A∩B) = .50 is an example of a joint probability.

Correct Answer

verifed

verified

The following probabilities are given about events A and B in a sample space: P(A) = 0.30, P(B) = 0.40, P(A or B) = 0.60. We can say that:


A) P(A∩B) = 0.70.
B) P(A) = P(A∩B) .
C) P(A∩B) = 0.10.
D) A and B are independent events.

Correct Answer

verifed

verified

The general law of addition for probabilities says P(A or B) = P(A) + P(B) - P(A∩B).

Correct Answer

verifed

verified

If P(A) = 0.35, P(B) = 0.60, and P(A or B) = 0.70, then:


A) A and B are mutually exclusive.
B) P(A∩B) = .15.
C) P(A∩B) = .25.
D) P(A∩B) = .35.

Correct Answer

verifed

verified

Given the contingency table shown here, if a faculty member is chosen at random, what is the probability he/she opposes the change to a quarter system? \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  Group Surveyed \text { Group Surveyed }  Opinion:  Undergrads (U)  Graduates (G)  Faculty (F)  Row Total  Oppose Change (N)  732720120 Favor Change (S)  27233080 Col Total 1005050200\begin{array}{|c|c|c|c|c|}\hline \text { Opinion: } &\text { Undergrads }(U) & \text { Graduates }(G) & \text { Faculty }(F) & \text { Row Total } \\\hline \text { Oppose Change (N) } &73 & 27 & 20&120 \\\hline \text { Favor Change (S) } &27 & 23 & 30&80 \\\hline \text { Col Total } &100 & 50 & 50&200 \\\hline\end{array}


A) .10
B) .25
C) .40
D) .60

Correct Answer

verifed

verified

Given the contingency table shown here, find P(R?L) . Survey question: Do you plan on retiring or keep working when you turn 65?  Employee  Retire (R)  Work (W)  Total  Management (M) 131831 Line worker (L) 395493 Total 5272124\begin{array} { | l | c | c | c | } \hline\text { Employee } & \text { Retire } ( R ) & \text { Work } ( W ) & \text { Total }\\\hline \text { Management } ( M ) & 13 & 18 &31 \\\hline \text { Line worker } ( L ) & 39 & 54 & 93 \\\hline \text { Total } & 52 & 72 & 124\\\hline\end{array}


A) .250
B) .315
C) .425
D) .850

Correct Answer

verifed

verified

Given the contingency table shown here, find P(L or W) . Survey question: Do you plan on retiring or keep working when you turn 65?  Employee  Retire (R)  Work (W)  Total  Management (M) 131831 Line worker (L) 395493 Total 5272124\begin{array} { | l | c | c | c | } \hline\text { Employee } & \text { Retire } ( R ) & \text { Work } ( W ) & \text { Total }\\\hline \text { Management } ( M ) & 13 & 18 &31 \\\hline \text { Line worker } ( L ) & 39 & 54 & 93 \\\hline \text { Total } & 52 & 72 & 124\\\hline\end{array}


A) .750
B) .588
C) .435
D) .895

Correct Answer

verifed

verified

The odds of an event can be calculated by dividing the event's probability by the probability of its complement.

Correct Answer

verifed

verified

Showing 81 - 100 of 123

Related Exams

Show Answer